检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐晓慧[1]
出 处:《国际经贸探索》2014年第1期17-31,共15页International Economics and Trade Research
摘 要:文章在理论分析FDI如何影响城乡收入差距的基础上,基于2002~2011年中国省域截面平均值数据,利用GWR模型,对中国省域城乡收入差距与FDI进行局域变参数实证估计。全域和局域空间自相关分析显示,中国省域城乡收入差距存在显著的空间自相关性,具有明显的局域集群趋势;不考虑和考虑空间自相关性的全域常参数估计结果显示,FDI的回归系数分别为-0.6074和-0.6518;考虑空间异质性的GWR模型局域变参数估计结果显示,FDI回归系数在-0.6915^-0.6750之间,FDI对各个省域城乡收入差距的影响存在差异。GWR模型能在纳入空间异质性的前提下有效地分析FDI对城乡收入差距的影响,以便提出缩小区域城乡收入差距的异质性政策建议。Based on the theoretical analysis of how FDI affects urban-rural income gap and the sectional average data of Chinese provinces from 2002 to 2011, and using a geographically weighted regression (GWR) model which includes spatial heterogeneity, this paper positively estimates and studies local varying elasticity coefficients of FDI on urban-rural income gap. The results, based on a spatial autocorrelation analysis of global Moran's I and local indicators of spatial association (LISA) analysis, show that there is a significantly global spatial dependency and an obvious local clustering trend for urban-rural income gap; the results estimated with and without the consideration of spatial autocorrelation show that the elasticity coefficient of FDI is -0.6939 and -0.6518; the locally varying parameter estimation results which consider spatial heterogeneity in the GWR models show that the elasticity coefficient of FDI is between -0.6915 and -0.6750, which means that FDI has different effects on different provinces' urban-rural income gap. The GWR model can effectively estimate the effect of FDI on urban-rural income gap under the premise of spatial heterogeneity, which brings differential policy implications for decreasing the regional urban-rural income gap.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28