检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖北汽车工业学院经济管理学院,湖北十堰442002
出 处:《湖北汽车工业学院学报》2013年第4期53-57,共5页Journal of Hubei University Of Automotive Technology
摘 要:为进一步提高实数编码量子进化算法在进化过程中的种群多样性以及在高维复杂函数优化上的全局收敛性,参照模拟退火算法的特点,提出了一种渐变选择概率的实数编码量子进化算法,该方法通过在进化过程中逐步提高更好解的选择概率,在进化计算初期保持种群的多样性,能较为全面地对解空间进行搜索,而在进化末期,选择概率逐渐提高到1,只接受更好的解而保证算法稳定的收敛。仿真实验结果表明,该算法能有效避免早熟和局部极值问题,具有更快的收敛速度和更高的求解精度。In order to further improve the population diversity in the process of evolutionary and convergence in the high-dimensional complex function optimization of real-coded quantum evolu- tionary algorithm, according to the characteristics of simulated annealing algorithm, a real-coded quantum evolutionary algorithm based on transition probability selection operation was proposed, in which through gradually raising the selective probability of better solutions in the process of evolutionary, the population diversity was maintained in the preliminary stage of evolutionary computation, the solution space could be searched more thoroughly, but late in evolution the selective probability was increased to 1 gradually, only the better solution would be accepted, thus the stability of convergence could be ensured. The simulation results show that this algorithm can avoid premature and local extreme, meanwhile, it has faster convergence speed and higher accuracy.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.88.145