检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐亚鹏[1] 赵文喜[1] 冯鸣凤[1] 桑换新[1]
出 处:《环境化学》2014年第1期129-134,共6页Environmental Chemistry
基 金:国家自然科学基金(20806059)资助
摘 要:以P掺杂的TiO2纳米颗粒为前驱体,采用水热合成法制备了系列P掺杂的TiO2纳米管.用N2吸附-脱附、透射电子显微镜(TEM)、X射线衍射(XRD)、激光拉曼光谱(Raman)、紫外可见漫反射(UV-Vis DRS)等方法对光催化材料的表面形貌、颗粒尺寸、孔结构、表面构造、吸光性能进行了分析.研究结果表明,所制备的各样品均为两端开口的纳米管形貌,管长为几十纳米到几百纳米,管外径约10 nm,内径约4 nm,管壁为多层;P掺杂后的系列TiO2纳米管仍保持锐钛矿晶型;掺杂的P可以进入到TiO2的骨架中,并形成P—O—Ti键,在TiO2禁带内引入杂质能级,降低了禁带能量,提高了TiO2的吸光性能及光生电子和空穴的分离性能.光催化甘油水溶液制氢活性评价表明,P掺杂的TiO2纳米管表现出了远高于纯TiO2管以及相同掺杂量的纳米颗粒的光催化制氢性能,2%P掺杂的样品在紫外灯和氙灯辐射下,其最高产氢速率可分别达1850μmol·(h·g)-1和335μmol·(h·g)-1.P掺杂TiO2样品光催化活性的提高与其禁带能量降低以及光生电子和空穴的分离性能增加有关.Using P-doped TiO2 nanoparticles as raw materials,P-doped TiO2 nanotubes were prepared by hydrothermal method. Their pore distribution,crystal structure,surface compositions,photo absorption properties were investigated by techniques of N2 adsorption-desorption,XRD,FT-Raman,TEM and UV-Vis DRS. The results show that all P-doped TiO2 samples exist as hollow multi-wall nanotube with length of tens to hundreds of nanometers,internal diameter of 4 nm and external diameter of 10 nm. P-doped TiO2 samples showed an extension of light absorption range,which mainly originates from the doping process with the formation of new energy level of P between conductor band and valence band of TiO2 to reduce the energy gap and the electron-hole recombination rate. The P-doped TiO2 nanotubes displayed improved photocatalytic activity for H2 production from glycerol solution,and 2% P-doped TiO2 nanotube shows a maximum H2 production rate of 1850 μmol·(h·g)-1 under UV irradiation and 335 μmol·(h·g)-1 under simulated-solar irradiation,respectively,which is related to the reduced energy gap and electron-hole recombination rate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117