检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何改云[1] 刘欣[1] 刘佩佩[1] 郭龙真[1]
机构地区:[1]天津大学机构理论与装备设计教育部重点实验室,天津300072
出 处:《中国机械工程》2014年第2期152-156,共5页China Mechanical Engineering
基 金:国家自然科学基金资助项目(50975200)
摘 要:为了评定复杂曲面轮廓度误差,提出了一种快速简便的分割球面逼近方法。该方法用球面逐步逼近测点垂足所在的曲面片来求得测点到设计曲面的最短距离,然后利用差分进化算法优化测点位置,结合分割球面逼近方法最终求得复杂曲面轮廓度误差值。将分割球面逼近方法和差分进化算法相结合,用于计算蜗杆齿面的轮廓度误差,仿真结果表明,该方法计算精度高于最小二乘法,能满足高精度误差评定的需求。In order to evaluate the profile errors of complex surface, a subdivision and sphere ap- proximation method, fast and convenient, was firstly presented. Approximating the surface patch con- taining the perpendicular foot of measuring point by a sphere,the shortest distance between a measur- ing point and surface was obtained. Secondly, a differential evolution algorithm was selected to opti- mize the position of measuring points. Finally, the evaluation of complex surface profile errors was re- alized by using subdivision and sphere approximation method combined with differential evolution al- gorithm. The proposed method was used to evaluate worm tooth--surface profile errors and the simu- lation results show that the method can obtain higher calculation accuracy compared with least square method and can satisfy the requirements of high--precision error evaluation.
关 键 词:最短距离 分割球面逼近 轮廓度误差 差分进化算法
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222