检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州大学计算机科学与信息学院,贵州贵阳550025
出 处:《计算机工程与科学》2014年第1期39-43,共5页Computer Engineering & Science
基 金:贵州省科学技术基金项目(黔科合J字[2012]2132);贵阳市科技计划项目(筑科合同[2011101]1-2号)
摘 要:概率测度和距离测度是模式识别最基本的两种测度,矢量量化算法是典型的基于距离测度的模式识别算法。根据量子模距离测度理论,在矢量量化算法的基础上,探索一种基于量子模距离的说话人识别方法。该方法针对说话人语音的时变性、随机性、特征维数较高等特点,将一帧语音信号视为一个量子态,并根据量子测量理论,对量子态之间进行模距离测量,从而对量子态进行有效的分类和聚类。研究表明该方法能有效地降低语音信号处理的复杂度。在经典计算机上的仿真表明,该方法在运行时间上略优于矢量量化算法,在识别率上明显优于矢量量化算法,为说话人识别的理论研究提供了新的途径。Probability measure and distance measure are the most basic measures in pattern recogni- tion, and vector quantization is a typical pattern recognition algorithm based on distance measure. Ac- cording to the theory of quantum model distance measure, on the basis of vector quantization method, the paper explores a speaker recognition method based on quantum model distance. In order to deal with the time-varying property, the randomness and the high-dimensional characteristics of speaker's voice, we see a frame of speech signal as a quantum state, and measure model distance between quantum states according to quantum measurement theory. Simulation results in classical computer demonstrate that this method has slightly better in terms of operating time and visibly better in terms of recognition rate than vector quantization. It can provide a new way for the theoretical investigation on speaker recogni- tion.
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49