基于Gabor变换的特征提取方法  被引量:3

Feature Extraction Based on Gabor Transform

在线阅读下载全文

作  者:李兴慧[1] 胡小青[1] 阴俊霞[1] 严辉容[1] 

机构地区:[1]四川工程职业技术学院机电工程系,四川德阳618000

出  处:《组合机床与自动化加工技术》2014年第1期29-30,34,共3页Modular Machine Tool & Automatic Manufacturing Technique

摘  要:鉴于旋转机械故障特征信号具有周期性或近似周期性,提出了基于Gabor变换的特征提取方法。该方法首先利用信号构造矩阵,再根据Gabor展开的线性时频变换特性,均值化Gabor展开系数,然后利用Gabor逆变换重构信号以实现降噪。仿真和试验结果表明,该方法能有效地提取故障信息,在旋转机械故障诊断领域应用前景广泛。In view of the periodic or approximately periodic characteristics in the failure signal of rotating machinery, a feature extraction method is presented based on Gabor transform. At first, the Gabor transform is applied to the structure matrix , and the matrix is composed of the signal. According to the time - frequency linear properties in Gabor transform domain, the Gabor expansion coefficients are processed by the average in the groups of Gabor coefficients, then the de - noised signal could be obtained by the inverse Gabor transform.. The simulation demonstrates that the averaging method based on Gabor transform is efective in signal processing, and could provides good prospects of application in failure analysis of rota- ting machinery.

关 键 词:GABOR变换 降噪 故障诊断 

分 类 号:TH17[机械工程—机械制造及自动化] TG65[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象