Novel Conductive PANI/Hydrophilic Thiacalix[4]arene Nanocomposites: Synthesis, Characterization and Investigation of Properties  被引量:1

Novel Conductive PANI/Hydrophilic Thiacalix[4]arene Nanocomposites: Synthesis, Characterization and Investigation of Properties

在线阅读下载全文

作  者:Rafieh-Sadat Norouzian Moslem M.Lakouraj Ehsan N.Zare 

机构地区:[1]Polymer Chemistry Research Laboratory, Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran

出  处:《Chinese Journal of Polymer Science》2014年第2期218-229,共12页高分子科学(英文版)

摘  要:Nanocomposites of polyaniline (PANI) and the macrocycle thiacalix[4]arene tetra sulfonate (TCAS) were successfully synthesized in feed ratios of 1:0.25, 1:0.50 and 1:0.75 by three prevail synthetic methods, i.e. in situ polymerization, emulsion polymerization and solution casting technique. The structures of the nanocomposites were confirmed by FTIR, UV-Vis, XRD, SEM, and TEM techniques. The conductivity was measured by a four probe method. The conductivity was recorded to be as high as 105 x 10-2 S.cm-~ for the nanocomposite with a nanometer size structure and homogeneously distributed morphology. The electroactivity of the nanocomposites was approved by cyclic voltammetry (CV) and impedance spectroscopy technique (EIS). The antioxidant ability and thermal property of the composites were further studied. Preliminary studies have evidenced the production of conductive nanocomposites with good thermal property and relatively good solubility in N-methyl 2-pyrrolidone (NMP), with the antioxidant activity reaching up to 80%.Nanocomposites of polyaniline (PANI) and the macrocycle thiacalix[4]arene tetra sulfonate (TCAS) were successfully synthesized in feed ratios of 1:0.25, 1:0.50 and 1:0.75 by three prevail synthetic methods, i.e. in situ polymerization, emulsion polymerization and solution casting technique. The structures of the nanocomposites were confirmed by FTIR, UV-Vis, XRD, SEM, and TEM techniques. The conductivity was measured by a four probe method. The conductivity was recorded to be as high as 105 x 10-2 S.cm-~ for the nanocomposite with a nanometer size structure and homogeneously distributed morphology. The electroactivity of the nanocomposites was approved by cyclic voltammetry (CV) and impedance spectroscopy technique (EIS). The antioxidant ability and thermal property of the composites were further studied. Preliminary studies have evidenced the production of conductive nanocomposites with good thermal property and relatively good solubility in N-methyl 2-pyrrolidone (NMP), with the antioxidant activity reaching up to 80%.

关 键 词:arene Nanocomposite POLYANILINE Conductivity Antioxidant. 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象