包含无关项的MPRM展开式最小化算法  被引量:1

Algorithm about minimization of MPRM expansions including don't care terms

在线阅读下载全文

作  者:汪迪生[1] 汪鹏君[1] 

机构地区:[1]宁波大学电路与系统研究所,浙江宁波315211

出  处:《浙江大学学报(理学版)》2014年第1期38-42,89,共6页Journal of Zhejiang University(Science Edition)

基  金:国家自然科学基金资助项目(61076032;61234002)

摘  要:通过对包含无关项布尔逻辑函数SOP(Sum-of-Products)展开式和MPRM(Mixed Polarity Reed-Muller)展开式的研究,结合基于系数矩阵的FPRM(Fixed Polarity Reed-Muller)展开式极性转换算法,提出了一种包含无关项逻辑函数MPRM展开式最小化算法.首先将包含无关项逻辑函数SOP展开式转换为MPRM展开式,并用系数矩阵的形式表示;然后删除函数中的冗余变量,归纳出一种包含无关项MPRM展开式最小化算法,得到与项数较少的MPRM展开式;最后随机选取15个MCNC基准电路进行测试,结果表明该算法能有效地优化电路面积.Based on the research of SOP(Sum-of-Products) expansions of Boolean logic functions and MPRM (Mixed Polarity Reed-Muller) expansions including don't care terms, in conjunction with polarity conversion algorithm of FPRM(Fixed Polarity Reed-Muller) expansions expressed by coefficient matrix, a minimization algorithm of MPRM expansions including don't care terms is proposed. Firstly, MPRM expansions are deduced from SOP(Sum-oLProd ucts) expansions of Boolean logic functions including don't care terms, and then expressed by coefficient matrix. Secondly, redundant variables are deleted and a minimization algorithm of MPRM expansions including don't care terms is proposed to minimize the number of AND terms. Lastly, 15 MCNC Benchmark circuits are selected ran- domly to verify that the proposed algorithm can optimize the circuits area effectively.

关 键 词:无关项 极性转换 MPRM展开式 最小化 

分 类 号:TN79[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象