检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学电路与系统研究所,浙江宁波315211
出 处:《浙江大学学报(理学版)》2014年第1期38-42,89,共6页Journal of Zhejiang University(Science Edition)
基 金:国家自然科学基金资助项目(61076032;61234002)
摘 要:通过对包含无关项布尔逻辑函数SOP(Sum-of-Products)展开式和MPRM(Mixed Polarity Reed-Muller)展开式的研究,结合基于系数矩阵的FPRM(Fixed Polarity Reed-Muller)展开式极性转换算法,提出了一种包含无关项逻辑函数MPRM展开式最小化算法.首先将包含无关项逻辑函数SOP展开式转换为MPRM展开式,并用系数矩阵的形式表示;然后删除函数中的冗余变量,归纳出一种包含无关项MPRM展开式最小化算法,得到与项数较少的MPRM展开式;最后随机选取15个MCNC基准电路进行测试,结果表明该算法能有效地优化电路面积.Based on the research of SOP(Sum-of-Products) expansions of Boolean logic functions and MPRM (Mixed Polarity Reed-Muller) expansions including don't care terms, in conjunction with polarity conversion algorithm of FPRM(Fixed Polarity Reed-Muller) expansions expressed by coefficient matrix, a minimization algorithm of MPRM expansions including don't care terms is proposed. Firstly, MPRM expansions are deduced from SOP(Sum-oLProd ucts) expansions of Boolean logic functions including don't care terms, and then expressed by coefficient matrix. Secondly, redundant variables are deleted and a minimization algorithm of MPRM expansions including don't care terms is proposed to minimize the number of AND terms. Lastly, 15 MCNC Benchmark circuits are selected ran- domly to verify that the proposed algorithm can optimize the circuits area effectively.
分 类 号:TN79[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44