检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海第二工业大学,上海201209 [2]华东理工大学,上海200237
出 处:《中国机械工程》2014年第3期393-398,共6页China Mechanical Engineering
基 金:国家自然科学基金资助项目(50905061);中央高校基本科研业务费专项资金资助项目;中国博士后科学基金资助项目(2011M500554)
摘 要:研究了滚动轴承支承的柔性转子系统的混沌行为。考虑空间Euler-Bernoulli杆单元、刚性圆盘、圆柱滚子轴承非线性接触力、不平衡力,使用有限单元法建立了柔性转子轴承系统的非线性动力学方程组。根据FPA修正法确定求解周期,采用Runge-Kutta法、Newton-Raphson法求解非线性动力学方程组,用获得的系统最大Lyapunov指数判断系统的混沌行为。以某滚子轴承柔性转子系统为例,研究了该类转子系统在径向间隙、不平衡力、转轴刚度比对柔性转子系统混沌特性的影响规律,发现随着轴承径向间隙的增大,系统的混沌区间逐渐增大、变多。不平衡力的存在使得系统混沌的转速及范围变大。随着刚度比增大,振幅峰值及对应的转速均逐渐增大,系统混沌区间也增多,轴承非线性振动对柔性转子系统非线性行为的影响逐渐增强。A flexible rotor system supported by rolling bearings was studied for chaos, where Euler-Bernoulli shaft element, rigid disk, non-linear contact forces of roller bearings and unbalance force were considered, dynamic equations were established using finite element analysis(FEA) method. Period of solutions were determined by fixed point algorithm(FPA) method, Runge-Kutta method and Newton-Raphson method were used for solving the nonlinear dynamic equations, the largest Lyapunov exponent of the system was obtained to determine the characteristics of the chaotic motion of the system. Taking a flexible rotor roller bearing system for an example, influences of radial clearance, unbalance, stiffness ratio between shaft and bearing on chaos characteristics of the rotor bearing system were analyzed. The results show that chaos range increases with the increase of the bearing radial clearance, unbalanced force has great influence on chaos characteristics of the system, the amplitude of the peak of the curve and the corresponding speed gradually increases and nonlinear behaviors become obviously with the stiffness ratio increases.
分 类 号:TH133.33[机械工程—机械制造及自动化] O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15