检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋长军[1] 白永祥[1] SONG Chang-jun,BAI Yong-xiang (Department Mechanical and Electrical Engineering of Weinan Vocational and Technology College, Weinan 71400, China)
机构地区:[1]渭南职业技术学院机电工程系,渭南陕西714000
出 处:《电脑知识与技术》2013年第12期7776-7781,共6页Computer Knowledge and Technology
摘 要:现代密码学协议的安全性多数是建立在数学难题基础之上,比如:大整数因子分解、有限域上的离散对数问题。通常情况下,这些算法不存在多项式时间问题,但随着攻击算法地不断改进,要求使用这些安全协议的算法密钥不断的加大,才得保证其使用的安全性。但密钥的加大增加了算法的复杂性,因此,找到一种能抵抗各种常见攻算法,运算量小,速度快的离散对数密码算法非常重要,椭圆曲线密码算法正好满足这种需要。论文回顾了常用公钥密码体制协议,相对于目前应用的其它密码体制,椭圆曲线密码体制有很大的优势,最后,分析了椭圆曲线密码体制在实际应用中可能受到的各种攻击算法。The security of the modern cryptography protocols is based on mathematical problems, For example:big integer factor decomposition, finite field of discrete logarithm problem. In the general case, there are no polynomial time algorithms for this problem, constant improvement of the attacking algorithm made these protocols require much larger key size, so that make sure the use of the security. But the larger key size increase the complexity of the algorithms , therefore, it is very important to find a resistant attack algorithm, small burden, the speed the discrete logarithm cryptographic algorithm , elliptic curve cryptography al-gorithms is just to meet this need. In this paper I reviewed the general protocols of the asymmetric cryptography system , and de-scribe the elliptic curve cryptography and its application to may be vulnerable to attack. Finally, I mention other applications that elliptic curves have had upon the analysis of other cryptosystems not involving them.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.221.185