检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张大林[1] 金大海[1] 宫云战[1] 张海龙[1] 杨学红[2]
机构地区:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876 [2]中国联通研究院,北京100032
出 处:《中国科学:信息科学》2014年第1期91-107,共17页Scientia Sinica(Informationis)
基 金:国家自然科学基金(批准号:61202080);国家自然科学基金重大研究计划(批准号:91318301);国家高技术研究发展计划(863)(批准号:2012AA011201)资助项目
摘 要:缺陷检测一般包括静态分析与人工确认两个阶段.静态缺陷检测工具报告大量警报,但是主要的警报确认工作仍然由人工完成,这是一件费时费力的工作.巨大的确认投入,会导致测试人员和管理人员拒绝使用该静态检测工具.为了辅助警报确认工作,提出一种基于警报踪迹挖掘的警报分类方法,使用该方法挖掘警报踪迹进而将代码结构相似警报分为一类,使得分类后的最终警报报告更加易于人工确认.实验表明,该方法能够在较大规模的软件测试过程中分类测试结果,提高警报确认效率.Defect detection generally includes static analysis and warning inspection two stages. A large number of defect warnings reported may lead developers and managers to reject the use of static analysis tools as part of the development process due to the overhead of warning inspection. To help with the inspection tasks,proposed a method of automatic defect alarms classifcation based on trace mining. We use data mining techniques to work on the warning traces to divide them into diferent groups by the code structure similarity,and make the fnal warning report easier to manual inspection. Experiments show that this method can classify test results and improve the efciency of warning inspection in large software testing process.
分 类 号:TP311.53[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28