检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZENG HuiHui
机构地区:[1]Mathematical Sciences Center,Tsinghua University
出 处:《Science China Mathematics》2014年第2期353-366,共14页中国科学:数学(英文版)
基 金:supported by National Science Foundation of USA(Grant No.DMS-0818717)
摘 要:This paper studies the multidimensional stability of traveling fronts in monostable reaction-difusion equations,including Ginzburg-Landau equations and Fisher-KPP equations.Eckmann and Wayne(1994)showed a one-dimensional stability result of traveling fronts with speeds c c(the critical speed)under complex perturbations.In the present work,we prove that these traveling fronts are also asymptotically stable subject to complex perturbations in multiple space dimensions(n=2,3),employing weighted energy methods.This paper studies the multidimensional stability of traveling fronts in monostable reaction-difusion equations,including Ginzburg-Landau equations and Fisher-KPP equations.Eckmann and Wayne(1994)showed a one-dimensional stability result of traveling fronts with speeds c c(the critical speed)under complex perturbations.In the present work,we prove that these traveling fronts are also asymptotically stable subject to complex perturbations in multiple space dimensions(n=2,3),employing weighted energy methods.
关 键 词:traveling fronts reaction-diffusion equations multi-dimensional stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222