检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐东辉[1,2] 李岳林[1] 杨巍[1] 丁景峰[1] 彭玲[1]
机构地区:[1]长沙理工大学汽车与机械工程学院,长沙410076 [2]宜春学院物理科学与工程技术学院,江西宜春336000
出 处:《计算机工程与应用》2014年第1期222-226,共5页Computer Engineering and Applications
基 金:高等学校博士学科点专项科研基金(No.20104316110002);国家自然科学基金(No.51176014)
摘 要:针对汽油机进气流量的多维非线性特性,提出了一种混沌径向基(RBF)神经网络的汽油机进气流量预测模型。证明了汽油机进气流量时间序列具有混沌特性,对采集的原始数据进行相空间重构,利用RBF神经网络对重构后的数据进行训练和预测,并利用混沌算法确定输出层连接权值和隐含层高斯函数径向基中心,使其达到全局最优,加快了RBF神经网络的收敛速度。仿真结果表明,与空气进气流量平均值模型、RBF神经网络预测模型比较,该模型具有更高的预测精度,为精确及时测试汽油机进气流量提供了一种全新的软件测量方法。A soft predictive model based on Chaos-RBF neural network is proposed for the intake air flow of gasoline engine as its multidimensional nonlinear characteristics. The engine air intake flow time series with chaotic characteristics have been proved;the phase space of the original data has also been reconstructed before using RBF neural network to train and predict. And then, the result has been compared with the air inlet flow average model and RBF neural network forecasting model. Chaos algorithm is used to determine and optimal the implied Gaussian radial basis function center and the out put layer connection weights, in order to accelerate the convergence rate of RBF neural network. The simulation results show that this model is a new method to measure the intake air flow of the engine with more accuracy and timeless, which is superior to the intake air flow average model and RBF neural network prediction model.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38