检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004
出 处:《计算机工程与应用》2014年第2期175-178,197,共5页Computer Engineering and Applications
摘 要:提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的局部特征和类别信息,而且完全避免了使用矩阵的奇异值分解。在ORL人脸库上的实验结果验证了该方法的有效性。A method of combination of improved modular 2DPCA and Maximum Scatter Difference discriminate analysis (MSD) is proposed. The improved modular 2DPCA is applied to the original face images for feature extraction. Then MSD is used to the sub-images of these obtained feature images in which way the final feature images are obtained. This method can not only exploit local features of original image and discriminate information but also totally avoid the prob- lem of singular value decomposition of matrix. Experiments performed on ORL face database verify the effectiveness of the proposed method.
关 键 词:模块二维主成分分析(2DPCA) 最大散度差鉴别分析 人脸识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.232