A local-world evolving hypernetwork model  被引量:2

A local-world evolving hypernetwork model

在线阅读下载全文

作  者:杨光勇 刘建国 

机构地区:[1]Research Center of Complex Systems Science, University of Shanghai for Science and Technology

出  处:《Chinese Physics B》2014年第1期532-538,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.71071098,91024026,and 71171136);supported by the Shanghai Rising-Star Program,China(Grant No.11QA1404500);the Leading Academic Discipline Project of Shanghai City,China(Grant No.XTKX2012)

摘  要:Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mecha- nisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is 7 = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypemetwork model shares the scale-flee and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.

关 键 词:local-world evolving hypernetwork model power-law form small-world property 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象