检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔丹丹[1,2] 张耀南[1,3] 赵国辉[1,3]
机构地区:[1]中国科学院寒区旱区环境与工程研究所,甘肃兰州730000 [2]中国科学院大学,北京100049 [3]甘肃高性能计算网格,甘肃兰州730000
出 处:《科研信息化技术与应用》2013年第5期70-75,共6页E-science Technology & Application
基 金:基于建模框架的生态-水文模型构建与参数模拟(91125005/D011004);国家基础科学人才培养基金冰川冻土特殊学科点项目(J1210003/J0109)
摘 要:遥感传感器和计算机技术的发展,每天都会汇集大量新的地理空间数据。地球科学许多应用要求数据实时或接近实时地处理,发展高性能计算是进行海量数据处理的必然趋势。本文以TM影像制备黑河流域归一化指数产品为例,基于高性能集群,实现了植被指数快速提取的并行计算方法,并采用对等并行编程模式,通过C语言调用MPI(Message Passing Interface,消息传递接口)和OpenCV(Open Source Computer Vision Library,开源计算机视觉库)函数库,实现了NDVI(Normalized Difference Vegetation Index,归一化植被指数)的并行计算,获得了黑河流域的NDVI。性能测试表明,并行计算可以显著提高遥感图像处理的速度。文章最后讨论了从原始影像提取植被指数产品的流程。With the advances of sensors and computer technology, a large number of new geospatial data is collected every day. In particular, many current and future applications of remote sensing in earth science require real or near real-time processing capabilities. Employing high performance computing (HPC) for remote sensing missions is an inevitable trend. As an example, we have made products of normalized difference vegetation index in Heihe watershed, and this paper presents how to implement parallel processing of remote sensing image based on high performance cluster. We use C language combined with MPI and OpenCV library and apply peer-to-peer parallel programming model to realize the parallel computation of NDVI. The performance test shows that this parallel method can significantly improve the speed of remote sensing image processing. At the end, the procedure of making vegetation index products from the original image is discussed.
关 键 词:并行计算 归一化植被指数(NDVI) 黑河流域
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117