检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:欧国建[1,2] 杨士中[1] 蒋清平[1] 曹海林[1]
机构地区:[1]重庆大学飞行器测控与通信教育部重点实验室,重庆400044 [2]重庆电子工程职业学院,重庆401331
出 处:《电子与信息学报》2014年第2期255-259,共5页Journal of Electronics & Information Technology
基 金:国家自然科学基金(51377179);中央高校基本科研业务费(CDJZR12160020);重庆教委项目(KJ120510)资助课题
摘 要:在加性高斯白噪声的影响下,对于三阶多项式相位信号(CPS),经典的字典学习算法,如K-means Singular Value Decomposition(K-SVD),递归最小二乘字典学习算法(RLS-DLA)和K-means Singular Value Decomposition Denoising(K-SVDD)得到的学习字典,通过稀疏分解,不能有效去除信号的噪声。为此,该文提出了针对CPS去噪的字典学习算法。该算法首先利用RLS-DLA对的字典进行学习;其次采用非线性最小二乘(NLLS)法修改了该算法对字典更新的部分;最后对训练后的字典通过对信号的稀疏表示得到重构信号。对比其它的字典学习算法,该算法的信噪比(SNR)值明显高于其它算法,而均方误差(MSE)显著低于其它算法,具有明显的降噪效果。实验结果表明,采用该算法得到的字典通过稀疏分解,信号的平均信噪比比K-SVD,RLS-DLS和K-SVDD高出9.55 dB,13.94 dB和9.76 dB。Under the influence of additive white Gaussian noise, the classical dectionary learning algorithms, such as K-means Singular Value Decomposition (K-SVD), Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) and K-means Singular Value Decomposition Denoising (K-SVDD), can not effectively remove the noise of Cubic Phase Signal (CPS). A novel dictionary learning algorithm for denoising CPS is proposed. Firstly,the dictionary is learned by using the RLS-DLA algorithm. Secondly,the update stage of the RLS-DLA algorithm is modified by using Non-Linear Least Squares (NLLS) in the algorithm. Finally, the signal is reconstructed via sparse representations over learned dictionary.Signal to Noise Ratio (SNR) obtained by using the novel dictionary learning algorithm is obviously higher than other algorithms,and the Mean Squares Error (MSE) obtained by using the novel dictionary learning algorithm is obviously lower than other algorithms. Therefore there is obviously denoising performance for using the dictionary learned by the algorithm to sparsely represent CPS. The experimental results show that the average SNR obtained by using the algorithm is 9.55 dB , 13.94 dB and 9.76 dB higher than K-SVD, RLS-DLS and K-SVDD.
关 键 词:三阶多项式相位信号 递归最小二乘字典学习算法 字典学习 非线性最小二乘法 曲线拟合
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.107.84