基于智能优化算法的河流水质模型参数的优化  被引量:3

Optimization of water quality model parameters for river based on intelligent optimization algorithm

在线阅读下载全文

作  者:刘韵[1] 李祚泳[1] 汪嘉杨[1] 

机构地区:[1]成都信息工程学院资源环境学院,成都610225

出  处:《环境工程学报》2014年第2期488-492,共5页Chinese Journal of Environmental Engineering

基  金:国家自然科学基金资助项目(51209024)

摘  要:为探索河流水质模型参数新的求解方法,根据有限的实测数据,分别应用免疫进化优化算法和免疫进化优选的捕食搜索算法,对河流水质模型计算公式中的多参数进行优化。将优化得到的计算公式用于国内外若干河流的河段中DO浓度值的拟合,并与实测结果进行了比较。结果表明,将免疫进化优化算法或免疫进化优选的捕食搜索算法优化得到的水质模型参数精度不仅较高,而且相对稳定,从而为河流水质模型参数的优化提供了一种新方法。The study was to explore the new method of water quality model parameters for river. According to the limited experimental data, the parameters in the formula of water quality model for river were optimized u- sing immune evolutionary algorithm and predatory search strategy of immune evolutionary optimization method re- spectively. The optimized formula was applied to the effects of the fitting of DO concentration in the reaches of certain rivers of domestic and foreign, and compared with measured results. The results showed that the water quality model parameters optimized using immune evolutionary algorithm or predatory search strategy of immune evolutionary algorithm have higher accuracy and better stability. This study provides a new method for the param- eter optimization of water quality model for river.

关 键 词:免疫进化算法 优选法 捕食搜索水质模型 模型参数 

分 类 号:X824[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象