Time-dependent Density Functional-based Tight-bind Method Efficiently Implemented with OpenMP Parallel and GPU Acceleration  

Time-dependent Density Functional-based Tight-bind Method Efficiently Implemented with OpenMP Parallel and GPU Acceleration

在线阅读下载全文

作  者:Guo-hong Fan Ke-li Han Guo-zhong He 

机构地区:[1]State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, ChineseAcademy of Sciences, Dalian 116023, China

出  处:《Chinese Journal of Chemical Physics》2013年第6期635-645,I0003,共12页化学物理学报(英文)

摘  要:The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds or thousands of atoms. Sparse matrix and OpenMP multithreaded are used for building the Hamiltonian matrix. The diagonal of the eigenvalue problem in the ground state is implemented on the GPUs with double precision. The GPU- based acceleration fully preserves all the properties, and a considerable total speedup of 8.73 can be achieved. A Krylov-space-based algorithm with the OpenMP parallel and CPU acceleration is used for finding the lowest eigenvalue and eigenvector of the large TDDFT matrix, which greatly reduces the iterations taken and the time spent on the excited states eigenvalue problem. The Krylov solver with the GPU acceleration of matrix-vector product can converge quickly to obtain the final result and a notable speed-up of 206 times can be observed for system size of 812 atoms. The calculations on serials of small and large systems show that the fast TD-DFTB code can obtain reasonable result with a much cheaper computational requirement compared with the first-principle results of CIS and full TDDFT calculation.

关 键 词:Density-functional theory Tight-binding method Time-dependent densityfunctional theory Excited state Graphical processing unit Krylov iterative algorithm Sparse matrix OPENMP 

分 类 号:TP334.7[自动化与计算机技术—计算机系统结构] O614.21[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象