Fatigue damage evaluation by metal magnetic memory testing  被引量:5

Fatigue damage evaluation by metal magnetic memory testing

在线阅读下载全文

作  者:王慧鹏 董丽虹 董世运 徐滨士 

机构地区:[1]National Key Laboratory for Remanufacturing,Academy of Armored Forces Engineering

出  处:《Journal of Central South University》2014年第1期65-70,共6页中南大学学报(英文版)

基  金:Projects(50975283,50975287)supported by the National Natural Science Foundation of China;Project(2011CB013401)supported by the National Basic Research Program,China

摘  要:Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT).Tension-compression fatigue test was performed on 0.45% C steel specimens. Normal and tangential components of magnetic memory testing signals, Hp(y) and Hp(x) signals, with their characteristics, K of Hp(y) and Hp(x)M of Hp(x), throughout the fatigue process were presented and analyzed. Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles, both Hp(y) and Hp(x) curves were stable after that, the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation. Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure. The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue. In initial and crack developing stages, the characteristics increased significantly due to dislocations increase and crack propagation, respectively. In stable stage, the characteristics remained constant as a result of dislocation blocking, K value ranged from 20 to 30 A/(m·mm)-1, and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work. After failure, both abnormal peaks of Hp(y) and peak of Hp(x) reversed, K value was 133 A/(m·mm)-1 and Hp(x)M was -640 A/m. The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue, so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing (MMMT).

关 键 词:metal magnetic memory testing MMMT signal tension-compression fatigue test feature extraction 

分 类 号:O346.2[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象