Building dynamic thermal simulation of low-order multi-dimensional heat transfer  被引量:1

Building dynamic thermal simulation of low-order multi-dimensional heat transfer

在线阅读下载全文

作  者:高岩 范蕊 张群力 J.J.ROUX 

机构地区:[1]Beijing Key Lab of Green Building and Energy Efficient Technology,Beijing University of Civil Engineering and Architecture [2]Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,Beijing University of Civil Engineering and Architecture [3]Sino-German College of Applied Sciences,Tongji University [4]Centre de Thermique de Lyon(CETHIL),UMR CNRS 5008,INSA Lyon,69621 Villeurbanne Cedex,France

出  处:《Journal of Central South University》2014年第1期293-302,共10页中南大学学报(英文版)

基  金:Project(51178023)supported by the National Natural Science Foundation of China

摘  要:Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings,which are widely used and have multi-dimensional heat transfers characteristics.For this work,state-model-reduction techniques were used to develop a reduced low-order model of multi-dimensional heat transfers.With hot box experiment of hollow block wall,heat flow relative errors between experiment and low-order model predication were less than 8% and the largest errors were less than 3%.Also,frequency responses of five typical walls,each with different thermal masses or insulation modes,the low-order model and the complete model showed that the low-order model results agree very well in the lower excitation frequency band with deviations appearing only at high frequency.Furthermore,low-order model was used on intersection thermal bridge of a floor slab and exterior wall.Results show that errors between the two models are very small.This low-order model could be coupled with most existing simulation software for different thermal mass envelope analyses to make up for differences between the multi-dimensional and one-dimensional models,simultaneously simplifying simulation calculations.Multi-dimensional heat transfers modeling is crucial for building simulations of insulated buildings, which are widely used and have multi-dimensional heat transfers characteristics. For this work, state-model-reduction techniques were used to develop a reduced low-order model of multi-dimensional heat transfers. With hot box experiment of hollow block wall, heat flow relative errors between experiment and low-order model predication were less than 8% and the largest errors were less than 3%. Also, frequency responses of five typical walls, each with different thermal masses or insulation modes, the low-order model and the complete model showed that the low-order model results agree very well in the lower excitation frequency band with deviations appearing only at high frequency. Furthermore, low-order model was used on intersection thermal bridge of a floor slab and exterior wall. Results show that errors between the two models are very small. This low-order model could be coupled with most existing simulation software for different thermal mass envelope analyses to make up for differences between the multi-dimensional and one-dimensional models, simultaneously simplifying simulation calculations.

关 键 词:building envelope thermal mass thermal bridge model reduction buildings simulation 

分 类 号:TK124[动力工程及工程热物理—工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象