检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐志成[1,2] 刘泉声[1] 夏才初[2] 吴月秀[1] 黄继辉[2] 王春波[2]
机构地区:[1]武汉大学土木建筑工程学院,武汉430072 [2]同济大学地下建筑与工程系,上海200092
出 处:《岩土力学》2014年第2期551-555,共5页Rock and Soil Mechanics
基 金:国家自然科学基金重点资助项目(No.41130742);国家自然科学基金资助项目(No.40972178);国家重点基础研究发展计划(973项目)(No.2014CB046904);湖北省自然科学基金重点项目(创新群体)(No.2011CDA119)
摘 要:岩石节理的非线性Maksimovic峰值抗剪强度准则,采用双曲线函数描述不同法向应力作用下剪胀角的变化,参数物理含义明确、适用的法向应力范围广且形式简洁。采用的参量'粗糙度角??'反映节理的粗糙程度,但由至少3组直剪试验数据回归分析确定,因此,不能采用该准则估算节理的峰值抗剪强度。通过等价关系,由已有的峰值抗剪强度准则得到用三维形貌参数表示的'粗糙度角??',提出含三维形貌参数的Maksimovic峰值抗剪强度准则。采用不同形貌节理的直剪试验数据对准则进行了验证,结果表明,计算值与试验值吻合较好,验证了公式的正确性;同时,亦与经典的Barton准则进行了对比。可用该准则预估节理的峰值抗剪强度。A nonlinear peak shear strength criterion, proposed by Maksimovic, uses a simple hyperbolic function to describe the peak dilatancy angle under different normal stresses. The model has significant advantages, such as parameters have physical meaning, law is valid from zero to infinity, and it is simpler from the view of mathematical point. The roughness of joint surface is expressed by the parameter of“roughness angle, ??”, obtained by using the least square fit method on basis of at least three sets of measured data. It is not easy to use the Maksimovic criterion to predict the peak shear strength of rock joints. In this paper, the roughness angle is determined by a rational method with a quantitative three dimensional morphology parameters of joint surface. Then, a modified Maksimovic peak shear strength criterion is proposed. Several experimental results are used for verification of the proposed relations. It is shown that the calculated values are in good agreement with the measured data. It also presents the comparison between the new criterion with the famous Barton’s criterion. We can use the proposed criterion as a useful tool to predict the peak shear strength for rock joints.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222