检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江经济职业技术学院,浙江杭州310018 [2]浙江大学生物系统工程与食品科学学院,浙江杭州310058
出 处:《光谱学与光谱分析》2014年第2期381-384,共4页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(31072247)资助
摘 要:探讨了可见-近红外光谱技术快速无损识别不同品牌车蜡的可行性。实验一共获得104样本,其中40个样本(建模集)用于建立模型,剩余64个样本(预测集)被用于独立验证建立好的模型。基于五种不同品牌车蜡的可见-近红外光谱分别建立了线性判别分析(linear Discriminant Analysis,LDA)和最小二乘支持向量机(least square-support vector machine,LS-SVM)模型。基于两个算法的全波段光谱模型的预测集正确率分别达到了84%和97%。进一步采用连续投影算法(successive projections algorithm,SPA)算法从751波段中选取了7个特征波段(351,365,401,441,605,926和980nm)。基于SPA选择的变量建立LS-SVM模型,准确率依然保持在97%。说明SPA选择的特征波段包含了对于车蜡品牌鉴别最重要的光谱信息,而大多数无用信息则被有效剔除。将SPA与LS-SVM算法的车蜡识别模型在保证正确率的基础上,还可以大大降低模型计算复杂程度,说明该模型能快速准确的从车蜡可见-近红外光谱中提取有效信息,并实现车蜡品牌的无损鉴别。Visible and near-infrared (Vis-NIR) spectroscopy was applied to identify brands of car wax .A total of 104 samples were obtained for the analysis ,in which 40 samples (calibration set) were used for model calibration ,and the remaining 64 sam-ples (prediction set) were used to validate the calibrated model independently .Linear discriminant analysis (LDA ) and least square-support vector machine (LS-SVM ) were respectively used to establish identification models for car wax with five brands based on their Vis-NIR spectra .Correct rates for prediction sample set were 84% and 97% for LDA and LS-SVM models ,re-spectively .Spectral variable selection was further conducted by successive projections algorithm ,(SPA) ,resulting in seven fea-ture variables (351 ,365 ,401 ,441 ,605 ,926 ,and 980 nm) selected from full range spectra that had 751 variables .The new LS-SVM model established using the feature variables selected by SPA also had the correct rate of 97% ,showing that the select-ed variables had the most important information for brand identification ,while other variables with no useful information were eliminated efficiently .The use of SPA and LS-SVM could not only obtain a high correct identification rate ,but also simplify the model calibration and calculation .SPA-LS-SVM model could extract the useful information from the Vis-NIR spectra of car wax rapidly and accurately for the non-destructive brand identification of car wax .
关 键 词:车蜡 Vis-NIR光谱 线性判别方法 最小二乘支持向量机 连续投影算法 Linear DISCRIMINATION analysis (LDA) Least-square support vector machine (LS-SVM ) Successive projections algorithm (SPA )
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7