检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱海军[1] 曹明明[1] 刘闻[1] 王彦民[2] 郝俊卿[3] 胡胜[1]
机构地区:[1]西北大学城市与环境学院,陕西西安710127 [2]陕西理工学院化学与环境科学学院,陕西汉中723001 [3]西安财经学院商学院,陕西西安710061
出 处:《地理科学》2014年第1期110-115,共6页Scientia Geographica Sinica
基 金:西北大学科学研究基金(12NW32);西北大学科研启动基金(PR12076);陕西省社会科学界2012年度重大理论与现实问题研究项目(2012Z029)共同资助
摘 要:选取相对高差、坡度、坡向、水系、距断层距离、植被覆盖、地层岩性和道路等影响因子,采用信息量法、Logistic回归和人工神经网络3种模型进行滑坡灾害的敏感性评价,并对评价结果进行检验。结果表明:①评价分类结果的准确性会关系到社会经济成本。经过采用Cohen’s Kappa系数法、Sridevi Jadi精度评估方法和ROC曲线3种方法对评价结果进行比较分析,结果显示人工神经网络模型具有更好的评价精度。②宁强县滑坡地域分布上,呈现一带三区。其中高、中和低敏感区分别占全县总面积的39.96%,37.7%和22.33%。Landslide disaster restricts the sustainable development of human beings which would cause deaths and injuries, property damage and living environment ruins seriously. The regions should be divided into deferent types on the base of disaster risk when making macroeconomic policy of regional geological disaster. Thus, it is very necessary to make susceptibility assessment on zoning prone and risk of geological disasters in these regions firstly. When different assessment models are employed, the results are different. Furthermore, land types according to result of the susceptibility would results in difference in economy. Thus, it was more important to employ suitable model whose susceptibility assessment results were objective and realistic to the fact; however, there were few reports in this field in China yet. This study made assessments on the susceptibility of landslide disaster and evaluated the results. The employed susceptibility assessment models were information value, logistic regression and artificial neural network model. The relative relief, slope, aspect, river system, distance to fault, vegetation cover, formation lithology and road were chosen as factors. The results were showed as following. Firstly, the accuracy of classification influenced the social economic cost. Cohen's Kappa factor method, precision evaluation method proposed by Sridevie Jadi and ROC curve method as the evaluation methods were used to evaluate the assessment results obtained from above models. The Kappa coefficients were 0.72, 0.69 and 0.55 by artificial neural network model, logistic regression method and information value model, respectively. The empirical probity (namely accuracy of prediction results) proposed by Sridevie Jadi of above 3 models was 87.48%, 74.26% and 69.54%, respectively. The AUC values were 0.805, 0.724 and 0.684, respectively. These evaluations proved that the assessment result obtained by artificial neural network model was more realistic to the fact. As a result, artificial neural network mode
分 类 号:P954[天文地球—自然地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229