检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王彦博[1]
机构地区:[1]中国民生银行发展规划部
出 处:《金融电子化》2014年第1期59-61,共3页Financial Computerizing
摘 要:大数据时代,对于商业银行而言,在不断完善计算机应用系统底层数据库群、操作数据存储、主数据存储、企业级数据仓库、数据集市等建设的基础上,网络爬虫、Hadoop、MapReduce、NoSQL、Lucene等技术拓宽了银行的数据掌控能力。当前,银行无论面对内部数据还是外部数据、结构性数据亦或非结构性数据,数据的产生、捕获、整合、存储、访问等技术均已日渐成熟。与此同时,数据的价值也随着数据生命周期的不断延伸而大幅提升。为实现数据价值的最大化,银行还需要对所积累的各类数据展开全面分析,深入挖掘和钻取数据,从中提炼出埋藏于数据深处的规律和趋势,全面运用于银行战略决策与业务发展。目前,商业银行已将数据挖掘定位于发展大数据战略的核心驱动力,是大数据信息化建设的重中之重。
关 键 词:商业银行 数据挖掘 操作数据存储 MapReduce 计算机应用系统 企业级数据仓库 Lucene 非结构性
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30