检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐有恒
机构地区:[1]南京化工学院
出 处:《工程数学学报》1991年第4期65-72,共8页Chinese Journal of Engineering Mathematics
摘 要:线性统计模型的参数估计问题是统计学中一个“古老”而至今仍十分活跃的重要领域。其中LS估计占突出重要的地位,它既便于使用,又在一定条件下是最优线性无偏估计(BLUE);因此,倍加重视对它的研究,既研究它的广泛应用和优良性,又探讨它的不足和改进。本文在综述线性模型参数的LS估计及其优良性的基础上,重点研讨了它的各种改进。计有岭估计、压缩估计、主成分估计、Casclla估计、Bayes估计等,最后给出权估计与权概括。在一定条件下,这些改进的估计都一致优于LS估计。In this paper, the author prime give a survey of Linear models and its parametric LSE and superiority. Continuative give Some new results on the Improve LSE, which includes ridge estimate, shrunken cstimatcm, principal components estimate, Casclla estimates, Bayes estimates, and so on. Finale give weight estimates and weight survey.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.182