Estimation of PM_(10) in the trafc-related atmosphere for three road types in Beijing and Guangzhou, China  被引量:3

Estimation of PM_(10) in the trafc-related atmosphere for three road types in Beijing and Guangzhou, China

在线阅读下载全文

作  者:Yu Wang Jiong Li Xiang Cheng Xiaoxiu Lun Dezhi Sun Xingzu Wang 

机构地区:[1]College of Environmental Science and Engineering, Beijing Forestry University [2]Beijing Northland Construction Engineering Co. Ltd

出  处:《Journal of Environmental Sciences》2014年第1期197-204,共8页环境科学学报(英文版)

基  金:supported by the Forestry Public Welfare Project of China(No.20130430104);the National Natural Science Foundation of China(No.51008025);the Fundamental Research Funds for the Central Universities(No.TD2011-22);the National Undergraduate Training Programs for Innovation and Entrepreneurship(No.201210022078)

摘  要:The levels of roadside PM10 in Beijing, China, were investigated in 2011 and 2012 on a seasonal basis to estimate the population exposure to particulates for three road types. The measurements of PM10 were also conducted in the southern Chinese megacity of Guangzhou for comparison purposes. The results showed that roadside PMlo in Beijing correlated strongly with the PM10 background in the urban atmosphere. The levels of PM10 in street canyons were markedly higher than those along the open roads and in crossroad areas because of limited ventilation. An elevation of PM10 was observed in April, which was possibly due to the sand storms that frequently occur in the spring. Based on these observations, roadside PM10 in Beijing could have multiple origins and was to some extent dispersion- governed. In Guangzhou, the roadside PM10 did not closely relate to the background values. The PM10 pollution was greatly affected by local traffic conditions. The simulation of PM10 for different road types was completed during the study period using the Motor Vehicle Emissions Factor Model (MOBILE6.2) as an emission model and the California Line Source Dispersion Model (CALINE4) and Operational Street Pollution Model (OSPM) as dispersion models. The MOBILE6.2/CALINE4 software package was demonstrated to be sufficient for the simulation of PM10 in the open roads and crossroad areas in both Beijing and Guangzhou, and the simulation results of roadside PM10 in the street canyons by the MOBILE6.2/OSPM package were in close agreement with those of the measurements.The levels of roadside PM10 in Beijing, China, were investigated in 2011 and 2012 on a seasonal basis to estimate the population exposure to particulates for three road types. The measurements of PM10 were also conducted in the southern Chinese megacity of Guangzhou for comparison purposes. The results showed that roadside PMlo in Beijing correlated strongly with the PM10 background in the urban atmosphere. The levels of PM10 in street canyons were markedly higher than those along the open roads and in crossroad areas because of limited ventilation. An elevation of PM10 was observed in April, which was possibly due to the sand storms that frequently occur in the spring. Based on these observations, roadside PM10 in Beijing could have multiple origins and was to some extent dispersion- governed. In Guangzhou, the roadside PM10 did not closely relate to the background values. The PM10 pollution was greatly affected by local traffic conditions. The simulation of PM10 for different road types was completed during the study period using the Motor Vehicle Emissions Factor Model (MOBILE6.2) as an emission model and the California Line Source Dispersion Model (CALINE4) and Operational Street Pollution Model (OSPM) as dispersion models. The MOBILE6.2/CALINE4 software package was demonstrated to be sufficient for the simulation of PM10 in the open roads and crossroad areas in both Beijing and Guangzhou, and the simulation results of roadside PM10 in the street canyons by the MOBILE6.2/OSPM package were in close agreement with those of the measurements.

关 键 词:roadside PM10 traffic volume open road crossroad street canyon 

分 类 号:X513[环境科学与工程—环境工程] U469.13[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象