基于随机惯性权重的简化粒子群优化算法  被引量:74

Simplified particle swarm optimization algorithm based on stochastic inertia weight

在线阅读下载全文

作  者:赵志刚[1] 黄树运 王伟倩[1] 

机构地区:[1]广西大学计算机与电子信息学院,南宁530004

出  处:《计算机应用研究》2014年第2期361-363,391,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(61063031);广西教育厅科研项目(201106LX035)

摘  要:针对标准粒子群优化算法易出现早熟收敛、搜索速度慢及寻优精度低等缺陷,提出一种基于随机惯性权重的简化粒子群优化算法。算法采用去除速度项的粒子群简化结构,通过随机分布的方式获取惯性权重提高新算法的局部搜索和全局搜索能力,并且学习因子采用异步变化的策略来改善粒子的学习能力。考虑到个体之间的相互影响关系,每个粒子的个体极值用所有粒子个体极值的平均值代替。通过几个典型测试函数仿真及F-检验结果表明,提出的算法在搜索速度、收敛精度、鲁棒性方面较已有改进算法有了显著提高,并且具有摆脱陷入局部最优解的能力。Abstract: This paper proposed a new particle swarm optimization (PSO) algorithm based on two aspects of improvement in standard PSO to avoid the problems about premature convergence and low precision. It applied the iteration formula of PSO based on the simple PSO which removes the velocity parameter. As two important factors in PSO, it determined inertia weight using stochastic variable, and learning factor was using asynchronous change strategy, to enhance the balance of global and lo- cal search of algorithm. Taking into account the interactive relationship among all particles, it replaced the personal best value of each by the mean value of them. Through several typical test functions simulation and F-test results show that the proposed algorithm not only has great advantages of convergence property over standard PSO and some other modified PSO algorithms, but also effectively avoids being trapped in local optimal solution.

关 键 词:粒子群优化算法 简化粒子群 惯性权重 学习因子 随机分布 异步变化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象