基于小波包域主成分分析的缸盖声压特征增强方法研究  被引量:3

Feature Enhancement Method for Cylinder Head Acoustic Pressure Based on Wavelet Package-Principal Component Analysis Method

在线阅读下载全文

作  者:尹刚[1] 张英堂[1] 李志宁[1] 任国全[1] 程利军[1] 

机构地区:[1]军械工程学院,石家庄050003

出  处:《内燃机工程》2014年第1期41-46,共6页Chinese Internal Combustion Engine Engineering

基  金:河北省自然科学基金资助项目(E20007001048);军内科研项目

摘  要:针对发动机缸盖声压中故障特征信号较为微弱的问题,在主成分分析坐标变换思想的基础上,提出了基于小波包域主成分分析的缸盖声压特征增强方法。在缸盖声压信号高通滤波后进行小波包分解,对各子带的小波系数建立主成分分析(principal component analysis,PCA)模型,将缸盖声压信号变换到PCA坐标系下,信号重构后再进行小波包分解,计算新坐标系下各子带的能量作为故障特征向量。仿真信号验证了小波包域主成分分析对微弱冲击信号的增强能力。新方法与支持向量机结合用于发动机11种工况的诊断实例表明:故障分类准确率达到97.53%。For extraction of the relatively weak fault information contained in engine cylinder head noise signals, basing on coordinate transformation theory of principal component analysis (PCA), a signal enhancement method by wavelet package-principal component analysis was proposed. Filtrated by a high-pass filter, the cylinder head noise signals were decomposed by wavelet package, and principal component analysis was used for each sub-band to transfer the original coordinate system. Then, signals were reconstructed in the PCA coordinate system and decomposed again using wavelet package method and the energy of each sub-band was considered as the feature vector of engine fault. The simulation signals obtained demonstrate that weak shock signals were effectively enhanced by the wavelet package-principal component analysis method. Practical example using proposed method combined with the support vector machine to detect engine faults in 11 operation conditions shows that the fault classification accuracy reaches 97.53%.

关 键 词:内燃机 小波包 特征增强 故障诊断 主成分分析 缸盖声压 

分 类 号:TK402[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象