检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国计量学院信息工程学院,杭州310018 [2]中国计量学院机电工程学院,杭州310018 [3]浙江大学能源工程学系、能源清洁利用国家重点实验室,杭州310027
出 处:《科技导报》2014年第3期56-61,共6页Science & Technology Review
基 金:国家科技支撑计划项目(2006BAC21B02)
摘 要:为预测煤矸石代黏土煅烧水泥的28 d抗压强度性能,根据生产水泥的物检分析数据,将GM(1,N)预测技术和径向基函数(RBF)神经网络技术相结合,提出了基于GM-RBF神经网络组合模型水泥强度预测的新方法。该组合模型首先利用试验产品的典型物检数据建立GM(1,N)网络,对数据进行预处理。然后将输入样本数据进行一次累加生成操作,并进行归一化,设置GMRBF神经网络组合模型预测精度和散步常数。经处理后的输入样本作为RBF神经网络输入向量,相应的实测28 d抗压强度作为模型的输出期望值开展训练,比较预测数据与实测数据,并进行调整,最终得到符合精度要求的GM-RBF神经网络组合模型。该组合模型一方面避免GM(1,N)模型的理论误差,利用累加生成运算和样本数据的预处理,减少了由于训练样本随机性对建模精度产生的影响;另一方面由于具有自适应、自组织和速度快等特点,能快速预测水泥远期强度情况。仿真试验表明,该模型预测精度优于单个GM(1,N)模型或RBF神经网络模型,具有较好的拟合性,适用于对水泥强度的预测,可以为煤矸石代黏土煅烧水泥的质量分析提供有效参考。In order to predict the 28 day compressive strength of coal gangues as clay for cement, a prediction method of grey model and radial basis function (GM-RBF) neural network combination model is presented according to the data of cement physics test analysis. The method makes used of the advantage of both GM and RBF neural network. Firstly, the combination model built up GM(1, N) network based on its test analysis data, and the data were preprocessed. One accumulated generation operation (I-AGO) and normalization were carried out. Predicted precision and scatter constant were set up to the combination model. Then, these processed samples served as the input vectors for RBF neural network, the measurement data of 28 day compressive strength served as output expectation value for model. Comparisons wel~ carried out between prediction data and measurement data, then the data were adjusted logically. Finally, the GM-RBF neural network combination model is fit for precision requirement. AGO and pretreatment were used for data processing which can reduce randomness of training samples. It also shows that the method is self-adaptive, self-organized and fast. The model can not only avoid the theoretical error of GM(1,N), but also predict the further period compressive strength. The results show that it is better than GM(1,AO model or RBF neural network model. The combination model owns a fine agreement andadapts to predict eement strength. It can provide efficient reference of quality analysis for coal gangues as clay for cement.
关 键 词:GM—RBF神经网络 累加生成运算 抗压强度 预测模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201