机构地区:[1]Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences [2]College of Global Change and Earth System Science,Beijing Normal University
出 处:《Research in Cold and Arid Regions》2014年第1期73-80,共8页寒旱区科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Grant Nos.41005009,41375001,and 41175009)
摘 要:This paper discusses the important role that flux profile relations play in momentum flux, sensible heat flux, and latent heat flux simulations in CoLM (Common Land Model) and compares the application of three flux profile relation schemes in CoLM by means of the Loess Plateau Land-Atmosphere Interaction Pilot Experiment (LOPEX) of 2005. It reveals that the results simulated by the model barely changed in the original flux profile schemes of the models a^er eliminating the very stable condition and the very unstable condition, and there were only tiny changes in numerical values. This indicates that the corrected terms added to fm(ξm),fh(ξh) were very tiny and can be ignored under very stable and very unstable circumstances. According to a comparison of the three flux profile relations, the simulation results were basically coherent by using any CoLM: the correlation coefficient of the simulation value and the observed value was 0.89, and this bears on the coherence with the numerical procedures for the flux pro- file relations under unstable circumstances. The simulation results were improved considerably by utilizing the Lobocki flux pro- file schemes, which numerical procedures under unstable circumstances differed significantly fi'om other three flux profile schemes; in this case the correlation coefficient of the value of simulation and the observed value became 0.95. In the next itera- tion of this study, it will be of great importance for the development of the land surface process model to continue experimenting with the application of some novel flux profile schemes in the land surface process models in typical regions.This paper discusses the important role that flux profile relations play in momentum flux, sensible heat flux, and latent heat flux simulations in CoLM (Common Land Model) and compares the application of three flux profile relation schemes in CoLM by means of the Loess Plateau Land-Atmosphere Interaction Pilot Experiment (LOPEX) of 2005. It reveals that the results simulated by the model barely changed in the original flux profile schemes of the models a^er eliminating the very stable condition and the very unstable condition, and there were only tiny changes in numerical values. This indicates that the corrected terms added to fm(ξm),fh(ξh) were very tiny and can be ignored under very stable and very unstable circumstances. According to a comparison of the three flux profile relations, the simulation results were basically coherent by using any CoLM: the correlation coefficient of the simulation value and the observed value was 0.89, and this bears on the coherence with the numerical procedures for the flux pro- file relations under unstable circumstances. The simulation results were improved considerably by utilizing the Lobocki flux pro- file schemes, which numerical procedures under unstable circumstances differed significantly fi'om other three flux profile schemes; in this case the correlation coefficient of the value of simulation and the observed value became 0.95. In the next itera- tion of this study, it will be of great importance for the development of the land surface process model to continue experimenting with the application of some novel flux profile schemes in the land surface process models in typical regions.
关 键 词:CoLM Loess Plateau flux profile relations COMPARISON
分 类 号:P433[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...