出 处:《Journal of Integrative Plant Biology》2014年第1期51-62,共12页植物学报(英文版)
基 金:financially supported in part by the National Science Foundation in China(30871558);the National High Technology Research and Development Program of China(863 Program)(2012AA101108-04-04);Jiangsu Agriculture Science and Technology Innovation Fund(cx(13)3059);a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
摘 要:Exploring the elite al eles and germplasm acces-sions related to fiber quality traits wil accelerate the breeding of cotton for fiber quality improvement. In this study, 99 Gossypium hirsutum L. accessions with diverse origins were used to perform association analysis of fiber quality traits using 97 polymorphic microsatel ite marker primer pairs. A total of 107 significant marker-trait associations were detected for three fiber quality traits under three different environments, with 70 detected in two or three environments and 37 detected in only one environment. Among the 70 significant marker-trait associations, 52.86% were reported previously, implying that these are stable loci for target traits. Furthermore, we detected a large number of elite al eles associated simulta-neously with two or three traits. These elite al eles were mainly from accessions col ected in China, introduced to China from the United States, or rare al eles with a frequency of less than 5%. No one cultivar contained more than half of the elite al eles, but 10 accessions were col ected from China and the two introduced from the United States did contain more than half of these al eles. Therefore, there is great potential for mining elite al eles from germplasm accessions for use in fiber quality improvement in modern cotton breeding.Exploring the elite al eles and germplasm acces-sions related to fiber quality traits wil accelerate the breeding of cotton for fiber quality improvement. In this study, 99 Gossypium hirsutum L. accessions with diverse origins were used to perform association analysis of fiber quality traits using 97 polymorphic microsatel ite marker primer pairs. A total of 107 significant marker-trait associations were detected for three fiber quality traits under three different environments, with 70 detected in two or three environments and 37 detected in only one environment. Among the 70 significant marker-trait associations, 52.86% were reported previously, implying that these are stable loci for target traits. Furthermore, we detected a large number of elite al eles associated simulta-neously with two or three traits. These elite al eles were mainly from accessions col ected in China, introduced to China from the United States, or rare al eles with a frequency of less than 5%. No one cultivar contained more than half of the elite al eles, but 10 accessions were col ected from China and the two introduced from the United States did contain more than half of these al eles. Therefore, there is great potential for mining elite al eles from germplasm accessions for use in fiber quality improvement in modern cotton breeding.
关 键 词:Association mapping elite allele fiber quality POPULATIONSTRUCTURE Upland cotton
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...