检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences, Huaqiao University [2]School of Mathematical Sciences, Xiamen University
出 处:《Acta Mathematica Scientia》2014年第1期93-106,共14页数学物理学报(B辑英文版)
基 金:Supported by National Natural Science Foundation of China-NSAF(10976026);the Research Funds for the Huaqiao Universities(12BS232)
摘 要:In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations without heat conductivity, which is a hyperbolic-parabolic system. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant states is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure, velocity and magnetic field are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations without heat conductivity, which is a hyperbolic-parabolic system. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant states is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure, velocity and magnetic field are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.
关 键 词:MAGNETOHYDRODYNAMICS optimal convergence rate decay-in-time estimates
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15