ON INTERSECTIONS OF INDEPENDENT NONDEGENERATE DIFFUSION PROCESSES  被引量:1

ON INTERSECTIONS OF INDEPENDENT NONDEGENERATE DIFFUSION PROCESSES

在线阅读下载全文

作  者:陈振龙 

机构地区:[1]College of Statistics and Mathematics, Zhejiang Gongshang University

出  处:《Acta Mathematica Scientia》2014年第1期141-161,共21页数学物理学报(B辑英文版)

基  金:supported by National Natural Science Foundation of China(11371321);Zhejiang Provincial Natural Science Foundation of China(Y6100663);the Key Research Base of Humanities and Social Sciences of Zhejiang Provincial High Education Talents(Statis-tics of Zhejiang Gongshang University)

摘  要:Let X(1) = {X(1)(s), s ∈ R+} and X(2) = {X(2)(t), t ∈ R+} be two inde-pendent nondegenerate diffusion processes with values in Rd. The existence and fractal dimension of intersections of the sample paths of X (1) and X (2) are studied. More gener-ally, let E1, E2?(0,∞) and F ?Rd be Borel sets. A necessary condition and a suffcient condition for P{X(1)(E1)∩X(2)(E2)∩F 6=?}〉0 are proved in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 × E2 × F in the metric space (R+× R+× Rd,ρb), whereρb is an unsymmetric metric defined in R+× R+× Rd. Under reasonable conditions, results resembling those of Browian motion are obtained.Let X(1) = {X(1)(s), s ∈ R+} and X(2) = {X(2)(t), t ∈ R+} be two inde-pendent nondegenerate diffusion processes with values in Rd. The existence and fractal dimension of intersections of the sample paths of X (1) and X (2) are studied. More gener-ally, let E1, E2?(0,∞) and F ?Rd be Borel sets. A necessary condition and a suffcient condition for P{X(1)(E1)∩X(2)(E2)∩F 6=?}〉0 are proved in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 × E2 × F in the metric space (R+× R+× Rd,ρb), whereρb is an unsymmetric metric defined in R+× R+× Rd. Under reasonable conditions, results resembling those of Browian motion are obtained.

关 键 词:INTERSECTION diffusion processes hitting probability polar set HAUSDORFFDIMENSION 

分 类 号:O211.6[理学—概率论与数理统计] TP391.41[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象