检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝稚传[1]
出 处:《黔东南民族师专学报》2000年第3期11-12,共2页Journal of Southeast Guizhou National Teachers College
摘 要:(1)若 n= 2k(偶数)(F_(n+3)~2—F_(n+1)~2)~2+(2F_(n+4)· F_n)~2+(4F_(n+2))~2=(F_(n+3)~2+F_(n+1)~2)~2. (2)若n=2k+1(奇数) (F_(n+4)~2—F_n~2)~2+(2F_(n+3)·F_(n+1))~2+(4F_(n+2))~2=(F_(n+4)~2+F_n~2)~2. 在此:F_n,F_(n+1),F_(n+2),F_(n+3),F(n+4)连续五项.In [1] Fibonacci: F_0=0, F_1=F_2 = 1, F_n = F_(n-1)+F_(n-2) (n≥2) If n is an even,then (3) (F_(n+4)·F_(n+1)~2 + (2F_(n+2)~2 = (F_(n+1)· F_(n+3))~2; If n is an odd,then (4) (F_n+3)· F_(n+1)~2 + (2F_(n+2)~2=(F_(n+4)F_n)~ 2. F. i. n=3, (8. 3)~2+ (2·5)~2=(13·2)~2,i. e. 24~2+10~2=26~2. We get Pythagoras Meets Fibonacci & Generalization. If n is an even,then (1) (F_(n+3)~2-F_(n+1)~2)~2 + (2F_(n+4)·F_n)~2 + (4F_(n+2))~2= (F_(n+3)~2+F_(n+1)~2)~2. If n is an odd,then (2) (F_(n+4)~2-F_n^2)~2 + (2F_(n+3)·F_(n+1))~2 + (4F_(n+2))~2=(F_(n+4)~2+F_n^2)~2.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3