检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐冰[1] 王星[1,3] Dhaene Tom 史新元[1] Couckuyt Ivo 白雁[3] 乔延江[1]
机构地区:[1]北京中医药大学中药信息工程研究中心,北京100029 [2]Ghent University-iMINDS,Department of Information Technology,Gent B-9050,Belgium [3]河南中医学院,河南郑州450008
出 处:《光谱学与光谱分析》2014年第3期638-642,共5页Spectroscopy and Spectral Analysis
基 金:国家“重大新药创制”科技重大专项(2010ZX09502-002)资助
摘 要:近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应建模策略可保证优化收敛于全局最优解。所建玉米多目标LS-SVM模型明显优于PLS1和PLS2模型;连翘多目标LS-SVM模型与PLS模型均可取得较好的校正和预测效果。两组数据中,径向基神经网络(RBFNN)模型均出现过拟合现象。多目标LS-SVM和单目标LS-SVM性能相近,但多目标LS-SVM建模运行一次即可得到结果,在NIR多组分定量分析中具有潜在应用优势。The near infrared (NIR) spectrum contains a global signature of composition ,and enables to predict different proper-ties of the material .In the present paper ,a genetic algorithm and an adaptive modeling technique were applied to build a multi-objective least square support vector machine (MLS-SVM ) ,which was intended to simultaneously determine the concentrations of multiple components by NIR spectroscopy .Both the benchmark corn dataset and self-made Forsythia suspense dataset were used to test the proposed approach .Results show that a genetic algorithm combined with adaptive modeling allows to efficiently search the LS-SVM hyperparameter space .For the corn data ,the performance of multi-objective LS-SVM was significantly bet-ter than models built with PLS1 and PLS2 algorithms .As for the Forsythia suspense data ,the performance of multi-objective LS-SVM was equivalent to PLS1 and PLS2 models .In both datasets ,the over-fitting phenomena were observed on RBFNN models .The single objective LS-SVM and MLS-SVM didn’t show much difference ,but the one-time modeling convenience al-lows the potential application of MLS-SVM to multicomponent NIR analysis .
关 键 词:多目标最小二乘支持向量机 遗传算法 近红外 多组分定量 自适应建模
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.173.156