基于中红外光谱分析技术的香菇产地识别研究  被引量:12

Producing Area Identification of Letinus Edodes Using Mid-Infrared Spectroscopy

在线阅读下载全文

作  者:朱哲燕[1,2] 张初[2] 刘飞[2] 孔汶汶[2] 何勇[2] 

机构地区:[1]浙江经济职业技术学院,浙江杭州310018 [2]浙江大学生工食品学院,浙江杭州310058

出  处:《光谱学与光谱分析》2014年第3期664-667,共4页Spectroscopy and Spectral Analysis

基  金:国家高技术研究发展计划(863计划)项目(2011AA100705)资助

摘  要:采用中红外光谱分析技术对香菇产地进行识别研究,并将相关向量机(relevance vector machine , RVM )算法应用于中红外光谱判别分析之中,取得了较好的效果。通过采集香菇粉末的中红外透射光谱,去除光谱噪声明显部分,对剩下的3581~689 cm-1透射谱线采用多元散射校正(multiplicative scatter correc-tion ,MSC)进行预处理,并基于预处理谱线建立了香菇产地识别的偏最小二乘判别分析(partial least squares-discriminant analysis ,PLS-DA)、簇类独立软模式分类(soft independent modeling of class analogy , SIMCA)、K 最邻近算法(K-nearest neighbor algorithm , KNN )、支持向量机(support vector machine , SVM )、RVM模型等五种判别分析模型。所有模型的识别正确率均高于80%,KNN ,SVM 和RVM 判别分析模型取得了相近的结果,建模集和预测集识别正确率高于90%。基于全谱的PLS-DA模型的加权回归系数,利用加权回归系数法选取了6个特征波数,并基于特征波数建立了PLS-DA ,KNN ,SVM 和RVM 模型。基于特征波数的PLS-DA模型的建模集和预测集识别正确率均低于80%,而KNN ,SVM和RVM模型的建模集和预测集的识别效果相近,且都高于90%。基于全谱和特征波数的模型中,RV M 算法表现出较好的效果,识别正确率优于90%。结果表明,基于中红外光谱技术能用于香菇产地的识别,特征波数的选择以及RVM算法可以有效的用于中红外光谱判别分析中。本文成功将中红外光谱用于香菇产地识别研究,为香菇品质以及其他农产品品质分析提供了一种新的想法,具有实际意义。In the present study ,Mid-infrared spectroscopy was used to identify the producing area of Letinus edodes ,and rele-vance vector machine (RVM) was put forward to build classification models as a novel classification technique ,and they obtained good performances .The head and the tail of the acquired mid-infrared spectra with the absolute noise were cut off ,and the re-maining spectra in the range of 3 581~689 cm-1 (full spectra) of Letinus edodes were preprocessed by multiplicative scatter cor-rection (MSC) .Five classification techniques ,including partial least Squares-discriminant analysis (PLS-DA) ,soft independent modeling of class analogy (SIMCA) ,K-nearest neighbor algorithm (KNN) ,support vector machine (SVM) and RVM ,were applied to build classification models based on the preprocessed full spectra .All classification models obtained classification accu-racy over 80% ,KNN ,SVM and RVM models based on full spectra obtained similar and good performances with classification accuracy over 90% in both the calibration set and the prediction set .The weighted regression coefficients (Bw) were used to se-lect effective wave numbers of mid-infrared spectra and 6 effective wave numbers in total were selected on the basis of the weigh-ted regression coefficients of PLS-DA model based on full spectra .PLS-DA ,KNN ,SVM and RVM models were built using these effective wave numbers .Compared with the classification models based on full spectra ,PLS-DA models based on effective wave numbers obtained relatively worse results with classification accuracy less than 80% ,and KNN ,SVM and RVM obtained similar results in both calibration set and prediction set with classification accuracy over 90% .RVM performed well with classifi-cation rate over 90% based on full spectra and effective wave numbers .The overall results indicated that producing area of Leti-nus edodes could be identified by mid-infrared spectroscopy ,while wave number selection and the RVM algorithm could be effec-tively used i

关 键 词:中红外光谱 香菇产地 相关向量机 RELEVANCE VECTOR machine (RVM ) 

分 类 号:O433.4[机械工程—光学工程] S464.9[理学—光学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象