一种不确定数据集上频繁模式挖掘的近似算法  被引量:8

Approximation algorithm for frequent itemsets mining on uncertain dataset

在线阅读下载全文

作  者:王水[1] 祝孔涛[2] 王乐[3] 

机构地区:[1]宁波大红鹰学院信息工程学院,浙江宁波315175 [2]南阳理工学院软件学院,河南南阳473000 [3]大连理工大学电子信息与电气工程学部计算机科学与技术学院,辽宁大连116024

出  处:《计算机应用研究》2014年第3期725-728,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(61173163);宁波市自然科学基金资助项目(2013A610115);宁波大红鹰学院大宗商品专项项目

摘  要:为提高不确定数据集上频繁模式挖掘的效率,针对已有算法在判断是否需要为头表中的某项创建子头表时的计算量比较大的问题,给出一个近似挖掘策略AAT-Mine,以损失小部分频繁项集为代价,提高整个算法的挖掘效率。采用三个不同的典型数据集进行了算法的测试,分别与目前最好的算法和典型算法进行性能对比。实验结果验证了近似算法AAT-Mine的时空效率都得到了提高。To improve the efficiency of frequent itemset mining upon uncertain dataset, addressing the issue of heavy computa- tion cost of existing algorithms on judging whether to build sub header table for a certain item in the header table, this paper proposed an approximation algorithm called AAT-Mine, at the cost of losing a small portion of frequent itemsets, improved the overall mining performance. It evaluated the AAT-Mine algorithm using three datasets against classical and state of art algo- rithms. Experimental results show that AAT-Mine not only outperforms AT-Mine, MBP, IMBP, UF-Growth and CUFP-Mine in terms of running time, but also remains efficient memory usage.

关 键 词:数据挖掘 频繁模式 频繁项集 不确定数据集 近似算法 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象