订正与集成多模式的中国季度降水预测  被引量:2

Seasonal precipitation forecasts over China through calibration and combination of multiple CGCMs

在线阅读下载全文

作  者:彭兆亮[1,2] Q. J. WANG 王子茹[1] 王国利[1] 徐超[1] 

机构地区:[1]大连理工大学建设工程学部,辽宁大连116024 [2]CSIRO Land and Water, Highett, VIC 3190, Australia

出  处:《水科学进展》2014年第1期1-9,共9页Advances in Water Science

基  金:国家自然科学基金资助项目(50779005)~~

摘  要:针对两个最新换代的季度集合预测系统对中国季度降水预测中存在的系统缺陷,应用改进的贝叶斯联合概率模型(BJP)加以订正。对订正后的单一模式概率预测应用一种混合模型贝叶斯模型平均(BMA)方法加以集成,以综合各模式的优势来提高中国季度降水预测技巧。结果表明:BJP模型可有效地消除集合模式预测的系统偏差,同时大幅提高了概率预测的可靠性。经过订正的欧洲中尺度天气预报中心的System4预测在许多季度在中国的很大区域范围内都显示出了一定的预测技巧;而澳洲气象局的POAMA2.4预测只在个别季度局部范围内具有技巧。使用BMA对订正后的单一模式预测进行集成可显著提高对中国季度降水预测的精度,相比单一模式预测,技巧得分为正值的网格百分率分别提高了13.3%和20.0%。Abstract :forecast systems in forecasting seasonal precipita- tly modified Bayesian joint probability (BJP) modelling approach was employed to calibrate the ensemble means of the raw forecasts firstly. The calibrated forecasts were then merged through Bayesian model av- eraging (BMA) to combine strengths from different models. The results suggested that the BJP calibration models ef- fectively removed biases and improved both reliability and overall accuracy of the raw forecasts. The calibrated ECMWF System4 (SYS4) forecasts exhibited some skill over broad regions of China in most seasons, whereas the cal- ibrated Australian Bureau of Meteorology's POAMA2.4 (P2.4) forecasts only showed weak skill over some regions in some seasons. Forecast skill of the merged forecasts from both sets of calibration models was improved greatly. Compa- ring with the SYS4 and P2.4 calibration forecast, the proportion of grid ceils with positive RMSEP skill score was im- proved by 13.3% and 20.0%, respectively.

关 键 词:贝叶斯联合概率模型 全球海气耦合模式 贝叶斯模型平均方法 季度降水 预测 

分 类 号:TV125[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象