Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles  被引量:9

Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles

在线阅读下载全文

作  者:Thanapong Phanthong Toshihiro Maki Tamaki Ura Takashi Sakamaki Pattara Aiyarak 

机构地区:[1]Department of Physics, Faculty of Science, Prince of Songkla University [2]Institute of Industrial Science, the University of Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan [3]Department of Computer Science, Faculty of Science, Prince of Songkla University

出  处:《Journal of Marine Science and Application》2014年第1期105-116,共12页船舶与海洋工程学报(英文版)

基  金:supported by the Ministry of Science and Technology of Thailand

摘  要:This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.This paper describes path re-planning techniques andunderwater obstacle avoidance for unmanned surface vehicle (USV)based on multi-beam forward looking sonar (FLS). Near-optimalpaths in static and dynamic environments with underwaterobstacles are computed using a numerical solution procedure basedon an A algorithm. The USV is modeled with a circular shape in 2degrees of freedom (surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time pathre-planning technique for actual USV using multi-beam FLS aredeveloped. Our real-time path re-planning algorithm has beentested to regenerate the optimal path for several updated frames inthe field of view of the sonar with a proper update frequency of theFLS. The performance of the proposed method was verifiedthrough simulations, and sea experiments. For simulations, theUSV model can avoid both a single stationary obstacle, multiplestationary obstacles and moving obstacles with the near-optimaltrajectory that are performed both in the vehicle and the worldreference frame. For sea experiments, the proposed method for anunderwater obstacle avoidance system is implemented with a USVtest platform. The actual USV is automatically controlled andsucceeded in its real-time avoidance against the stationary underseaobstacle in the field of view of the FLS together with the GlobalPositioning System (GPS) of the USV.

关 键 词:UNDERWATER OBSTACLE AVOIDANCE real-time pathre-planning A* ALGORITHM SONAR image unmanned surface vehicle 

分 类 号:U675.7[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象