四体纠缠态表象的构建及其应用  被引量:3

Four particles entangled state representation and its applications

在线阅读下载全文

作  者:卢道明[1] 

机构地区:[1]武夷学院机电工程学院,福建武夷山354300

出  处:《光电子.激光》2014年第2期393-397,共5页Journal of Optoelectronics·Laser

基  金:福建省自然科学基金资助项目(2011J01018)

摘  要:利用有序算符乘积内的积分(IWOP)技术,构建了一种四体相容算符1+2+3+4、p1-p2、p1-p3和p1-p4的共同本征态。研究表明,这种量子态具有正交性和完备性,完全可以作为一种新的表象。在动量表象和坐标表象中,对这种量子态进行了Schmidt分解,表明它是一种四体纠缠态。利用这种纠缠态构造了一个新的四模压缩算符,并分析其压缩特性,指出了纠缠与压缩的内在联系。Operators (x1+x2+x3+4、p1-p2、p1-p3 and p1-p4) satisfy the commutation relation [x1+x2+x3+x4,p1-p2]=0,[x1+x2+x3+x4,p1-p2]=0,and [p1-p3,p1-p4].Therefore,they have common eigenvectors.By two particles entang led state representation inspired,we first construct a pure Gaussian integral.Then we split the integrated operator into a pure state projection operator.Finaly,the eigenvector of four c ompatible operators [x1+x2+x3+x4,p1-p2,p1-p3 and p1-p4) is proposed in Fock space by the technique of integration within an ordered product of operators(IWOP).It s complete and orthogonal characteristics are analyzed.Its entanglement is discussed by obtaining Schmidt decomposition in momentum representation and in coordinate representation.The results show that it makes up a new quantum mechanical representation and is an entangled state.On the other ha nd,we also calculate the asymmetric ket-bra integral.Then we construct a new four-mode s queezed operator by using this entangled state representation and discuss its squeezed property .Further more,a four-mode squeezed vacuum state is constructed.The fluctuations of its two quadrature components are calculated.The results show that it has a squeezing effect.

关 键 词:有序算符乘积内的积分(IWOP)技术 四体相容算符 Schmidt分解 纠缠态表象 

分 类 号:O431.2[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象