检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:茹正亮[1] 杨芝艳[1] 朱文刚[1] 杨红莉[1]
出 处:《系统工程》2013年第12期98-102,共5页Systems Engineering
基 金:南京工程学院校级青年基金资助项目(QKJB2011022);引进人才科研启动基金资助项目(YKJ201114)
摘 要:针对降水量序列的随机性,基于非线性时间序列理论和马尔科夫链原理,首先应用AR-GARCH-GED模型拟合时序的总体趋势,得到的精度指标是随机波动的,其次应用有序聚类对精度指标分类,用加权马尔科夫链对精度指标状态预测,再次应用状态概率线性插值法修正精度指标,最后反推出预测值。该方法既包含了非线性时间序列的点预测,又融合了加权马尔科夫模型的状态预测,从而较好的揭示了降水量的内在规律,提高了预测精度,得到了满意的结果。Directed at the randomness of precipitation sequence based on nonlinear time series theory and Markov chain theory, the AR-GARCH-GED model is firstly applied, which fits the timing of the overall trend, and the resulting accuracy indicators with random fluctuations are obtained. Then sequential cluster is applied to classify the precision indexes, whose state is predicted by Markov chains. In addition, state linear interpolation is used to correct the accuracy index. Finally the predictive value is anti-inferred. The method including the point prediction of the nonlinear time series and the state prediction of weighted Markov model, which can further reveal the inner laws of precipitation and improve the accuracy of prediction as well as obtain the satisfactory results.
关 键 词:随机过程 加权马尔科夫 有序聚类 AR—GARCH—GED模型 预测
分 类 号:O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.158.174