检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]鞍山师范学院计划审计处,辽宁鞍山114007 [2]鞍山市科技情报研究所,辽宁鞍山114000
出 处:《鞍山师范学院学报》2013年第6期38-41,59,共5页Journal of Anshan Normal University
摘 要:提出了一种基于多属性分类的KNN改进算法,可有效提高传统的欧几里德KNN算法和基于信息熵的KNN改进算法的分类准确度.首先,按照单个属性不同属性值的个数占整个属性包含样本的比例进行属性的分类,分为基于信息熵的KNN算法处理的离散属性和基于传统欧几里德KNN相似度处理的连续属性两类,然后分别对不同属性进行区别处理;其次,将两类不同处理后得到的结果按比例求和作为样本之间的距离;最后,选取与待测样本的距离最小的k个样本判断测试样本的决策属性类别.To improve the classification accuracy of the conventional Euclidean KNN algorithm and the im-proved KNN algorithm based on information entropy,this paper proposes an improved KNN algorithm based on multi-attribute classification. The procedures of the new algorithm comprise:i) classify the attributes according to the percentage of their attribute values in an entire attribute of sample set into those discrete attributes suit-able for entropy-based KNN algorithm and those continuous attributes suitable for conventional Euclidean KNN similarity-based algorithm;ii) process the two types of attributes separately and then sum up the two series of results with weighing and put the sum as the distance between samples;iii) select k samples those are closest to the test sample to determine the decision attribute type of the test sample.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31