检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学无线网络联合实验室,南京210003 [2]南京邮电大学计算机学院,南京210003
出 处:《计算机应用》2014年第3期700-703,共4页journal of Computer Applications
基 金:国家973计划项目(2011CB302903);国家自然科学基金资助项目(60873231);江苏高校优势学科建设工程资助项目(yx002001)
摘 要:针对无线传感器网络(WSN)中的信任值更新问题,提出了一种基于模糊预测(FP)的无线传感器网络信任值更新的方法——RMFP。算法采用模糊数学理论方法,利用模糊隶属函数来全面地刻画节点的表现行为,并将其转换成节点的模糊隶属度,最后将模糊隶属度进行整合以实现节点的信任值更新。仿真实验表明,所提算法在整合节点信任值精确度方面提高了10.8%,在判断可疑节点的速度方面提高了两倍。这说明基于模糊预测的节点信任值更新算法在发现并摒除恶意节点的准确率和速度上均有显著的效果,尤其是针对前期取得高信任的恶意节点的判断具有很强的优势。In view of the update problem of the trust value in Wireless Sensor Network (WSN), a trust model based on Fuzzy Prediction ( FP), called RMFP, was proposed. The behavior of nodes was described by using fuzzy mathematics theory method, and the fuzzy membership degree was converted by the fuzzy membership functions. Finally, the trust value was achieved by integrating the fuzzy membership degrees. The simulation results show that the accuracy of trust value is increased by 10.8%, and the judgment speed of suspected nodes is increased by two times. This shows that the effect on accuracy and speed of discovering, eliminating malicious node is more significant, especially for the judgment of the pre-made malicious nodes of high trust value.
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117