检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余艳[1,2]
机构地区:[1]武汉科技大学理学院,武汉430065 [2]华中科技大学计算机科学与技术学院,武汉430074
出 处:《计算机应用》2014年第3期828-832,共5页journal of Computer Applications
基 金:冶金工业过程系统科学湖北省重点实验室(武汉科技大学)开放基金资助项目(Y201101)
摘 要:为提高高斯混合模型(GMM)间相似性度量方法的计算效率和准确性,通过对称化KL散度(KLD)并结合移地距离(EMD)提出一种新的相似性度量方法。首先计算待比较的两个高斯混合模型内各高斯成分间的KL散度,对称化处理后用于构造地面距离矩阵;然后用线性规划方法求解两个高斯混合模型间的移地距离作为高斯混合模型间的相似性度量。实验结果表明,将该相似性度量方法应用于彩色图像检索,相对于传统方法能够提高检索的时间效率和准确性。To improve the computation efficiency and effectiveness of the similarity measure method between two Gaussian Mixture Models (GMM), a new measure method was proposed by means of integrating symmetrized Kullback-Leibler Divergence (KLD) and earth mover's distance. At first, the KL divergence between Gaussian components of the two GMMs to be compared was computed and symmetrized for constructing the earth distance matrix. Then, the earth mover's distance between the two GMMs was computed using linear programming and it was used for GMM similarity measure. The new measure method was tested in colorful image retrieval. The experimental results show that the proposed method is more effective and efficient than the traditional measure methods.
关 键 词:图像检索 高斯混合模型 KL散度 移地距离 颜色空间分布
分 类 号:TP391.413[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.45.209