检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连大学,大连市经济技术开发区大连116622
出 处:《应用数学和力学》2001年第1期47-55,共9页Applied Mathematics and Mechanics
基 金:辽宁省科学技术基金资助(972068);辽宁省教委高校科研项目资助(9826421184)
摘 要:用Hamilton原理建立了复合材料叠层圆柱壳非线性动力稳定性理论的一般性基本方程 ,其中包含了非线性大挠度 ,横向剪切 ,纵向惯性力等因素· 用变分法获得基本方程的解· 分析表明 :叠层圆柱壳在动载荷下会发生参数共振而进入动力不稳定区域而导致动力失稳· 计算了几种典型复合材料圆柱壳 :即T30 0 / 52 0 8石墨环氧 ,E_玻璃环氧和ARALL圆柱壳· 结果表明 :这些因素对于各种复合材料圆柱壳的动力稳定性具有程度不同的重要影响 ,所以研究叠层圆柱壳动力稳定性时 。Hamilton Principle was used to derive the general governing equations of nonlinear dynamic stability for laminated cylindrical shells in which, factors of nonlinear large deflection, transverse shear and longitudinal inertia force were concluded. Equations were solved by variational method. Analysis reveals that under the action of dynamic load, laminated cylindrical shells will fall into a state of parametric resonance and enter into the dynamic unstable region that causes dynamic instability of shells. Laminated shells of three typical composites were computed: i.e.T300/5208 graphite epoxy E_glass epoxy, and ARALL shells. Results show that all factors will induce important influence for dynamic stability of laminated shells. So, in research of dynamic stability for laminated shells, to consider these factors is important.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.163.198