检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南林业科技大学林业遥感信息工程研究中心,长沙410004 [2]中南大学信息物理工程学院,长沙410083
出 处:《测绘科学》2014年第2期146-149,共4页Science of Surveying and Mapping
基 金:国家自然科学基金项目(30871962);国家自然科学基金项目(31100412);国家"十二五"863项目(2012AA102001):数字化森林资源监测关键技术研究;国家重大专项(E0305/1112/02)
摘 要:本文利用主成分分析法分别对乔木树种高光谱反射率原始数据及3种预处理数据进行降维运算,再使用SVM-RBF、SVM-Linear、BP、Fisher 4种分类算法,对降维后的数据进行分类测试,发现累积方差贡献率与分类精度没有必然联系,而主成分的个数对分类结果的影响较为明显;不同的数据预处理方法和不同的分类方法对主成分分析算法降维后数据的分类灵敏度不同。In order to investigate the separability of tree species using hyperspectral data, the three different data transformations and dimensional reduction of the hyperspectral reflectivity data using Principal Component Analysis (PCA) algorithm were explored in the paper. Four classification algorithms including Support Vector Machine (SVM)-Raial Basis Function (RBF), Support Vector Machine (SVM)-Linear,Back Propagation(BP)neural network and Fisher classification method were compared. The results showed that cumulative contribution of variance was not necessarily associated with classification accuracy. However, the number of principal components had a more obvious effect on classification. Various data transformations and classification methods showed the different classification effects.
分 类 号:P237.9[天文地球—摄影测量与遥感] TP751[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.216