检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中华中医药杂志》2014年第3期904-907,共4页China Journal of Traditional Chinese Medicine and Pharmacy
基 金:上海市卫生局中医药科研基金课题(No.2010J004A)~~
摘 要:目的:探讨育肾养血方结合不同剂量雌孕激素治疗卵巢早衰(POF)大鼠疗效差异,研究育肾养血方结合雌孕激素序贯疗法能否降低POF治疗中激素用量。方法:取Wistar大鼠80只,其中70只采用皮下注射同种大鼠卵巢组织液造模后,均分为7组,除空白对照组、模型对照组、西药组及纯中药组外,分别给予育肾养血方结合不同剂量(全量、半量、1/4量及1/8量)雌孕激素灌胃。结果:中药结合全量激素组疗效最好,其次为中药+半量激素组,二者与模型组比较差异有统计学意义(P<0.05);西药组与中药+1/4量激素组疗效相当;中药+1/8量激素组及中药组疗效相对较差。结论:育肾养血方结合不同剂量雌孕激素能不同程度延缓大鼠卵巢功能衰竭进程,中药在提高疗效的同时,可减少激素用量,降低副作用。Objective: To study the therapeutic effects on premature ovarian failure (POF) rats treated with traditional Chinese medicine combined with different dosages of estrogen and progesterone, to study whether Yushen Yangxue Decoction combined with female progestogen sequential therapy could reduce the dosage of ovarian hormones in POF treatment. Methods: 80 Wistar rats, after subcutaneous injection of rat ovarian tissue, 70 rats were divided into 7 groups, except the blank control group, model group, western medicine group and pure herbs group, each group was given Yushen Yangxue Decoction combined with different dosages (full, half, 1/4,1/8) of estrogen and progesterone orally, respectively. Results: The therapeutic effect of the full dosage group combined with Chinese medicine was the best, followed by half dosage one. Compared with model group, the difference was statistically significant (P〈0.05). The effect of western medicine group equaled 1/4 dosage group, followed 1/8 dosage one, and the pure herbs group. Conclusion: Yushen Yangxue Decoction combined with different dosages of estrogen and progestin could delay ovarian function failure progress in rats. Traditional Chinese medicine could improve the efficacy, and reduce the dosage of hormone, descend the side effects of hormone.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229