Existence of periodic orbits and shift-invariant curve sequences near multiple homoclinics  

Existence of periodic orbits and shift-invariant curve sequences near multiple homoclinics

在线阅读下载全文

作  者:XU Yan-cong GENG Feng-jie 

机构地区:[1]Department of Mathematics,Hangzhou Normal University [2]School of Science,China University of Geosciences

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2014年第1期108-118,共11页高校应用数学学报(英文版)(B辑)

基  金:Supported by Science Research Foundation of the Returned Overseas Chinese Scholar,SEM,the NSF of China(11202192);Zhejiang Province(LY13A010020)and Program for Excellent Young Teachers in HNU(HNUEYT2013)

摘  要:In this paper, the complicated dynamics is studied near a double homoclinic loops with bellows configuration for general systems. For the non-twisted multiple homoclinics, the existence of periodic orbit with the specified route and the existence of shift-invariant curve sequences defined on the cross sections of multiple homoclinics corresponding to any specified one-side infinite sequences are given. In addition, the existence regions are also located.In this paper, the complicated dynamics is studied near a double homoclinic loops with bellows configuration for general systems. For the non-twisted multiple homoclinics, the existence of periodic orbit with the specified route and the existence of shift-invariant curve sequences defined on the cross sections of multiple homoclinics corresponding to any specified one-side infinite sequences are given. In addition, the existence regions are also located.

关 键 词:Bifurcations Homoclinic bellows Periodic orbit Invariant-curve sequences 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象