检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山东化工》2014年第2期38-40,共3页Shandong Chemical Industry
基 金:重质油国家重点实验室开放课题基金资助项目(201103004)
摘 要:小波滤波能有效降低化工过程测量数据的随机误差,但却无法识别测量数据中是否存在过失误差。为此,本文通过总结大量小波滤波数据校正实例中校正值、分解层数与过失误差之间存在的关系,提出了三者之间的关系公式,并根据此公式侦破识别过失误差。对Aspen Dynamic模拟产生的测量数据的校正结果表明,文中提出的公式准确的反映出了校正值、分解层数和过失误差的关系,并且利用该公式能够有效地侦破和识别过失误差。Wavelet has a good performance on chemical measurements error reduction, but it cannot identify the presence of gross errors in measured data. For this reason, this paper summarizes a large number of examples of data reconciliation, and then obtains a relationship between correction value, decomposition level and gross error, and a formula is derived from this relationship, it is used to detect and identification gross error. According to the reconciliation of measurement data which is simulated by Aspen Dynamic, the formula accurately reflects the relationship between the correction value, decomposition level and gross error, and it can effectively detect and identify the gross errors.
分 类 号:TQ015.9[化学工程] TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70